Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients.
نویسندگان
چکیده
Association between cytochrome P450 (CYP) 3A4*1G genotype of donors (n=412) and/or recipients (n=410), and the pharmacokinetics of tacrolimus and the risk of acute cellular rejection was examined in Japanese living-donor liver transplant patients between 2004 and 2011. The concentration/dose (C/D) ratio of tacrolimus in patients carrying graft liver with CYP3A4*1/*1 was significantly higher during 7 d after surgery than in that with CYP3A4*1/*1G (214 vs. 157 [ng/mL]/[mg/kg/day], p<0.01). After postoperative day 8, no significant difference was observed among CYP3A4*1G genotypes in the graft liver. However, the C/D ratio in CYP3A4*1/*1 of the intestine was significantly higher than that in CYP3A4*1G/*1G for 5 weeks after surgery (postoperative days 1-14; p<0.001, postoperative days 15-35; p<0.01). During postoperative days 14 and 26, acute cellular rejection incidences tended to be lower in the patients with graft liver carrying the CYP3A4*1/*1 allele than in the patients carrying CYP3A4*1G allele (8.7% vs. 14.6%, p=0.0973). However, CYP3A4*1G in the intestine had almost no effect on the incidence of rejection (9.9% in CYP3A4*1/*1 vs. 12.5% in CYP3A4*1G allele, p=0.4824). CYP3A4*1G was significantly related to mRNA expression of CYP3A5 rather than of CYP3A4 in the graft liver and intestine and was strongly linked with the CYP3A5*1. Thus, we elucidated that CYP3A4*1G genotype in the intestine was an important indicator of the pharmacokinetics of tacrolimus, whereas this genotype in the graft liver tended to influence the frequency of acute cellular rejection after transplantation.
منابع مشابه
Decreased tacrolimus levels after administration of rifampin to a patient with renal transplant.
The calcineurin inhibitor tacrolimus is used to prevent organ rejection following renal transplant. This drug is metabolized through the hepatic cytochrome P450 (CYP450) 3A enzymes, in particular, CYP3A4 and CYP3A5. A strong relationship between CYP3A5 genetic polymorphisms and the pharmacokinetics of tacrolimus has been demonstrated in kidney, heart, and liver graft recipients. Previous studie...
متن کاملCYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients.
BACKGROUND CYP3A5 genotyping might be useful to guide tacrolimus and sirolimus dosing. The aim of this study was to assess the influence of CYP3A5 polymorphism on everolimus metabolism and pharmacokinetics. METHODS We investigated the effect of CYP3A5 6986A>G polymorphism (CYP3A5*1/*3 alleles) on the pharmacokinetics of everolimus in 28 renal transplant patients and on its in vitro hepatic me...
متن کاملExpression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملBenefits of minimizing immunosuppressive dosage according to cytochrome P450 3A5 genotype in liver transplant patients: findings from a single-center study.
We evaluated the clinical efficacy of tailoring tacrolimus dosage to cytochrome P450 (CYP) 3A5 genotype in liver transplant patients. One hundred patients who received tacrolimus-based therapy were included in the retrospective study in which the relationship between the tacrolimus blood trough concentration/dosage ratio and the CYP3A5 genotype of both donors and recipients was determined. Subs...
متن کاملBiological interactions of CYP2C19 genotypes with CYP3A4*18, CYP3A5*3, and MDR1-3435 in living donor liver transplantation recipients
BACKGROUND Polymorphisms in CYP2C19 are related to the metabolic oxidation of drugs to varying degrees. The CYP3A4*18, CYP3A5*3, and MDR1-3435 variant alleles are very important, particularly in tacrolimus metabolism in organ transplant rejection. AIM The aim of this study is o explore possible interactions among different CYP2C19 genotypes, namely, between homozygous extensive metabolizers (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 36 11 شماره
صفحات -
تاریخ انتشار 2013